Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diacridinium tetrakis(thiocyanato-κS)platinate(II)

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 12 January 2010; accepted 20 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.040; wR factor = 0.068; data-to-parameter ratio = 15.9.

The asymmetric unit of the title compound, $(C_{13}H_{10}N)_2$ [Pt(NCS)₄], contains a protonated acridine molecule and one half of a [Pt(NCS)₄]²⁻ anion. In the complex anion, the Pt^{II} ion is located on an inversion centre and is four-coordinated in a slightly distorted square-planar environment by four S atoms from four thiocyanate ligands. The compound displays numerous intermolecular π - π interactions between sixmembered rings, with a shortest centroid–centroid distance of 3.682 (3) Å. The component ions interact by means of intermolecular N–H···N hydrogen bonds.

Related literature

For related acridinium compounds, see: Hafiz (2006); Veldhuizen *et al.* (1997). For the crystal structures of $[M(NCS)_4]^{2-}$ [M = Pt(II), Pd(II)] complexes, see: Aoki *et al.* (1999); Deplano *et al.* (2004); Rohde *et al.* (2000).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{13}{\rm H}_{10}{\rm N})_2 [{\rm Pt}({\rm NCS})_4] \\ M_r = 787.85 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 6.8358 \ (8) \ {\rm \AA} \\ b = 11.9833 \ (15) \ {\rm \AA} \\ c = 17.737 \ (2) \ {\rm \AA} \\ \beta = 93.618 \ (2)^\circ \end{array}$

Data collection

Bruker SMART 1000 CCD	8278 measured reflections
diffractometer	2968 independent reflections
Absorption correction: multi-scan	2003 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.039$
$T_{\min} = 0.463, \ T_{\max} = 1.000$	
Refinement	

$[F^2 > 2\sigma(F^2)] = 0.040$	187 parameters
$[1^{2} > 20(1^{2})] = 0.040$	10/ parameters
$R(F^2) = 0.068$	H-atom parameters constrained
= 1.03	$\Delta \rho_{\rm max} = 0.89 \text{ e} \text{ Å}^{-3}$
068 reflections	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

R w S

Selected bond lengths (Å).

Pt1-S1	2.3236 (17)	Pt1-S2	2.3254 (17)

Table 2

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $N3-H3\cdots N1^{i}$ 0.861.972.829 (6)177Summatry code: (i)x + 1x + 1x - 1

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0074570).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2274).

References

- Aoki, K., Hu, N.-H., Tokuno, T., Adeyemo, A. O. & Williams, G. N. (1999). *Inorg. Chim. Acta*, 290, 145–152.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deplano, P., Mercuri, M. L., Marchiò, L., Pilia, L., Salidu, M., Serpe, A. & Tronci, E. (2004). *Inorg. Chim. Acta*, 357, 1608–1612.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hafiz, H. R. (2006). Phys. Stat. Sol. (A), 203, 878-885.
- Rohde, J.-U., von Malottki, B. & Preetz, W. (2000). Z. Anorg. Allg. Chem. 626, 905–910.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Veldhuizen, Y. S. J., Smeets, W. J. J., Veldman, N., Spek, A. L., Faulmann, C., Auban-Senzier, P., Jérome, D., Paulus, P. M., Haasnoot, J. G. & Reedijk, J. (1997). *Inorg. Chem.* **36**, 4930–4937.

supplementary materials

Acta Cryst. (2010). E66, m200 [doi:10.1107/S1600536810002485]

Diacridinium tetrakis(thiocyanato-KS)platinate(II)

K. Ha

Comment

The asymmetric unit of the title compound contains a protonated acridine cation and one half of a $[Pt(NCS)_4]^{2-}$ anionic complex (Fig. 1). In the complex, the Pt^{II} ion is located on an inversion centre at the special position (1, 1/2, 1/2) and is four-coordinated in a slightly distorted square-planar environment by four S atoms from four NCS⁻ ligands. The Pt—S bond lengths are nearly equivalent [2.3236 (17) and 2.3254 (17) Å] (Table 1). The *cis* S—Pt—S bond angles are 88.82 (6) and 91.18 (6)°. The thiocyanate anions are almost linear displaying S—C—N bond angles of 175.7 (6) and 176.9 (6)°. The S atoms coordinate to the Pt atom with nearly tetrahedral Pt—S—C bond angles of 105.9 (2) and 104.4 (2)°. The compound displays numerous intermolecular π - π interactions between six-membered rings, with a shortest centroid–centroid distance of 3.682 (3) Å. The component ions interact by means of intermolecular N—H···N hydrogen bonds (Fig. 2 and Table 2).

Experimental

To a solution of K_2PtCl_6 (0.2002 g, 0.412 mmol) in H_2O (20 ml) was added KNCS (0.3998 g, 4.114 mmol) and refluxed for 1 h. After cooling of the reaction mixture to room temperature, acridine (0.1479 g, 0.825 mmol) was added and refluxed for 3 h. The precipitate obtained was separated by filtration, washed with H_2O and dried at 50 °C, to give an orange powder (0.1894 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a MeOH solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93, N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C, N)$].

Figures

Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (a) 2-x, 1-y, 1-z.]

Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Diacridinium tetrakis(thiocyanato-κS)platinate(II)

Crystal data

 $(C_{13}H_{10}N)_2[Pt(NCS)_4]$ $M_r = 787.85$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.8358 (8) Å b = 11.9833 (15) Å c = 17.737 (2) Å $\beta = 93.618$ (2)° V = 1450.0 (3) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer	2968 independent reflections
Radiation source: fine-focus sealed tube	2003 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.039$
ϕ and ω scans	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -8 \rightarrow 8$
$T_{\min} = 0.463, T_{\max} = 1.000$	$k = -14 \rightarrow 14$
8278 measured reflections	$l = -11 \rightarrow 22$

F(000) = 768

 $\theta = 2.3 - 20.2^{\circ}$

 $\mu = 5.16 \text{ mm}^{-1}$

Block, orange

 $0.11\times0.10\times0.10~mm$

T = 293 K

 $D_{\rm x} = 1.804 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 720 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.068$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0175P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2968 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
187 parameters	$\Delta \rho_{max} = 0.89 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.50 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pt1	1.0000	0.5000	0.5000	0.05422 (12)
S1	0.8814 (3)	0.44333 (14)	0.38044 (9)	0.0807 (5)

S2	1.2773 (2)	0.56944 (17)	0.44661 (10)	0.0862 (6)
N1	0.6764 (7)	0.2432 (4)	0.3972 (3)	0.0747 (16)
N2	1.1409 (9)	0.6690 (5)	0.3098 (3)	0.095 (2)
C1	0.7597 (8)	0.3255 (5)	0.3932 (3)	0.0609 (16)
C2	1.1910 (9)	0.6278 (5)	0.3653 (4)	0.0686 (19)
N3	0.2844 (5)	0.5161 (3)	0.0610 (3)	0.0497 (11)
Н3	0.2917	0.5852	0.0740	0.060*
C3	0.2417 (6)	0.4939 (5)	-0.0132 (3)	0.0454 (12)
C4	0.2091 (7)	0.5803 (5)	-0.0660 (4)	0.0569 (15)
H4	0.2199	0.6546	-0.0513	0.068*
C5	0.1610 (8)	0.5522 (6)	-0.1395 (4)	0.0666 (18)
Н5	0.1365	0.6083	-0.1751	0.080*
C6	0.1481 (8)	0.4401 (7)	-0.1621 (4)	0.0730 (18)
Н6	0.1161	0.4233	-0.2126	0.088*
C7	0.1808 (8)	0.3563 (6)	-0.1124 (4)	0.0708 (19)
H7	0.1722	0.2826	-0.1288	0.085*
C8	0.2283 (7)	0.3802 (5)	-0.0354 (3)	0.0515 (14)
С9	0.2682 (7)	0.2991 (5)	0.0195 (4)	0.0611 (17)
Н9	0.2664	0.2245	0.0051	0.073*
C10	0.3109 (7)	0.3256 (5)	0.0957 (3)	0.0521 (14)
C11	0.3508 (8)	0.2451 (5)	0.1531 (4)	0.0675 (18)
H11	0.3496	0.1696	0.1411	0.081*
C12	0.3904 (9)	0.2780 (6)	0.2253 (4)	0.077 (2)
H12	0.4196	0.2249	0.2626	0.092*
C13	0.3877 (8)	0.3919 (6)	0.2445 (4)	0.0752 (19)
H13	0.4116	0.4126	0.2948	0.090*
C14	0.3509 (8)	0.4722 (5)	0.1915 (3)	0.0614 (17)
H14	0.3488	0.5471	0.2052	0.074*
C15	0.3163 (7)	0.4401 (5)	0.1159 (3)	0.0473 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Pt1	0.0612 (2)	0.04675 (18)	0.0540 (2)	-0.00893 (17)	-0.00227 (16)	0.00275 (19)
S1	0.1100 (14)	0.0712 (11)	0.0591 (11)	-0.0381 (11)	-0.0097 (10)	0.0064 (10)
S2	0.0712 (12)	0.1146 (15)	0.0721 (12)	-0.0280 (11)	-0.0007 (10)	0.0130 (12)
N1	0.090 (4)	0.052 (3)	0.081 (4)	-0.013 (3)	-0.005 (3)	0.006 (3)
N2	0.105 (5)	0.113 (5)	0.069 (4)	-0.034 (4)	0.008 (4)	0.014 (4)
C1	0.071 (4)	0.054 (4)	0.056 (4)	-0.001 (3)	-0.011 (3)	0.003 (3)
C2	0.072 (5)	0.068 (5)	0.067 (5)	-0.029 (4)	0.020 (4)	-0.017 (4)
N3	0.043 (2)	0.048 (3)	0.058 (3)	0.004 (2)	0.007 (2)	-0.004 (3)
C3	0.032 (3)	0.053 (3)	0.053 (3)	0.000 (3)	0.011 (2)	-0.006 (3)
C4	0.042 (3)	0.060 (4)	0.069 (4)	0.001 (3)	0.005 (3)	0.003 (4)
C5	0.043 (3)	0.092 (5)	0.066 (5)	0.006 (3)	0.010 (3)	0.011 (4)
C6	0.062 (4)	0.097 (5)	0.060 (4)	0.006 (4)	0.009 (4)	-0.015 (5)
C7	0.054 (4)	0.073 (5)	0.086 (5)	-0.005 (3)	0.015 (4)	-0.027 (4)
C8	0.039 (3)	0.058 (4)	0.060 (4)	-0.005 (3)	0.015 (3)	-0.013 (3)
C9	0.044 (3)	0.048 (4)	0.093 (5)	-0.003 (3)	0.021 (4)	-0.011 (4)

supplementary materials

C10	0.042 (3)	0.056 (4)	0.060 (4)	0.006 (3)	0.009 (3)	-0.001 (3)
C11	0.053 (4)	0.051 (4)	0.099 (6)	0.010 (3)	0.012 (4)	0.011 (4)
C12	0.073 (5)	0.081 (5)	0.078 (5)	0.010 (4)	0.014 (4)	0.027 (5)
C13	0.062 (4)	0.102 (6)	0.062 (4)	0.009 (4)	0.006 (4)	0.008 (5)
C14	0.060 (4)	0.063 (4)	0.061 (4)	0.005 (3)	0.003 (3)	-0.003 (3)
C15	0.038 (3)	0.048 (3)	0.057 (4)	0.003 (3)	0.009 (3)	0.001 (3)
Geometric paran	neters (Å, °)					
Pt1—S1		2.3236 (17)	(С6—Н6		0.9300
Pt1—S2		2.3254 (17)	(С7—С8		1.414 (7)
S1—C1		1.661 (6)	(С7—Н7		0.9300
S2—C2		1.676 (7)	(С8—С9		1.390 (7)
N1-C1		1.143 (6)	(C9—C10		1.400 (7)
N2—C2		1.135 (7)	(С9—Н9		0.9300
N3—C15		1.341 (6)	(C10—C11		1.417 (7)
N3—C3		1.357 (6)	(C10—C15		1.417 (7)
N3—H3		0.8600	(C11—C12		1.350 (8)
C3—C4		1.403 (7)	(С11—Н11		0.9300
C3—C8		1.419 (7)	(C12—C13		1.408 (8)
C4—C5		1.367 (7)	(С12—Н12		0.9300
C4—H4		0.9300	(C13—C14		1.358 (7)
C5—C6		1.403 (9)	(С13—Н13		0.9300
С5—Н5		0.9300	(C14—C15		1.402 (7)
С6—С7		1.345 (8)	(С14—Н14		0.9300
S1 ⁱ —Pt1—S1		180.0	(С6—С7—Н7		120.0
S1 ⁱ —Pt1—S2		91.18 (6)	(С8—С7—Н7		120.0
S1—Pt1—S2		88.82 (6)	(С9—С8—С7		123.9 (6)
$S1^i$ —Pt1— $S2^i$		88.82 (6)	(С9—С8—С3		118.1 (5)
S1—Pt1—S2 ⁱ		91.18 (6)	(С7—С8—С3		118.0 (6)
S2—Pt1—S2 ⁱ		180.0	(C8—C9—C10		122.5 (5)
C1—S1—Pt1		105.9 (2)	(С8—С9—Н9		118.8
C2—S2—Pt1		104.4 (2)	(С10—С9—Н9		118.8
N1-C1-S1		175.7 (6)	(C9—C10—C11		123.9 (6)
N2—C2—S2		176.9 (7)	(C9—C10—C15		117.6 (6)
C15—N3—C3		125.9 (5)	(C11—C10—C15		118.4 (6)
C15—N3—H3		117.1	(C12—C11—C10		120.1 (6)
C3—N3—H3		117.1	(С12—С11—Н11		120.0
N3—C3—C4		121.2 (5)	(С10—С11—Н11		120.0
N3—C3—C8		117.6 (5)	(C11—C12—C13		120.5 (6)
C4—C3—C8		121.2 (5)	(С11—С12—Н12		119.8
C5—C4—C3		118.3 (6)	(С13—С12—Н12		119.8
С5—С4—Н4		120.9	(C14—C13—C12		121.7 (6)
С3—С4—Н4		120.9	(C14—C13—H13		119.2
C4—C5—C6		121.0 (6)	(С12—С13—Н13		119.2
С4—С5—Н5		119.5	(C13—C14—C15		118.7 (6)
С6—С5—Н5		119.5	(C13—C14—H14		120.6
C7—C6—C5		121.5 (6)	(С15—С14—Н14		120.6

С7—С6—Н6	119.2	N3—C15—C14	121.2 (5)
С5—С6—Н6	119.2	N3—C15—C10	118.3 (5)
C6—C7—C8	120.0 (6)	C14—C15—C10	120.6 (6)
S2—Pt1—S1—C1	145.5 (2)	C7—C8—C9—C10	-178.7 (5)
S2 ⁱ —Pt1—S1—C1	-34.5 (2)	C3—C8—C9—C10	3.3 (8)
S1 ⁱ —Pt1—S2—C2	-140.0 (2)	C8—C9—C10—C11	179.5 (5)
S1—Pt1—S2—C2	40.0 (2)	C8—C9—C10—C15	-1.2 (8)
C15—N3—C3—C4	179.4 (4)	C9-C10-C11-C12	-179.9 (5)
C15—N3—C3—C8	0.3 (7)	C15-C10-C11-C12	0.8 (8)
N3—C3—C4—C5	-178.1 (5)	C10-C11-C12-C13	1.6 (9)
C8—C3—C4—C5	0.9 (7)	C11—C12—C13—C14	-1.8 (10)
C3—C4—C5—C6	-1.2 (8)	C12—C13—C14—C15	-0.4 (9)
C4—C5—C6—C7	0.5 (9)	C3—N3—C15—C14	-177.1 (5)
C5—C6—C7—C8	0.4 (9)	C3—N3—C15—C10	1.8 (7)
C6—C7—C8—C9	-178.7 (5)	C13-C14-C15-N3	-178.2 (5)
C6—C7—C8—C3	-0.7 (8)	C13-C14-C15-C10	2.9 (8)
N3—C3—C8—C9	-2.8 (7)	C9—C10—C15—N3	-1.3 (7)
C4—C3—C8—C9	178.1 (5)	C11-C10-C15-N3	178.0 (5)
N3—C3—C8—C7	179.0 (4)	C9-C10-C15-C14	177.6 (5)
C4—C3—C8—C7	0.0 (7)	C11-C10-C15-C14	-3.1 (7)
Symmetry codes: (i) $-r+2 - y+1 - z+1$			

Symmetry codes: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3···N1 ⁱⁱ	0.86	1.97	2.829 (6)	177.

Symmetry codes: (ii) -x+1, y+1/2, -z+1/2.

Fig. 1

Fig. 2